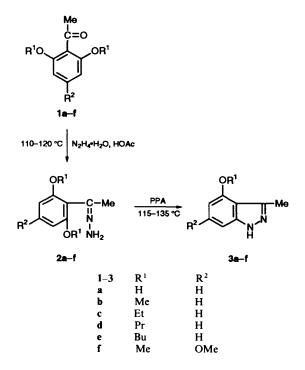
## A New and Facile Synthesis of 1H-Indazoles

Zhong Zhenqi,\*.<sup>a</sup> Xu Tongsheng,<sup>a</sup> Chen Xiaonai,<sup>b</sup> Qui Yuzhu,<sup>c</sup> Zhang Zheng<sup>c</sup> and Hu Hongwen<sup>c</sup>


<sup>a</sup> Department of Organic Chemistry, Henan Medical University, Zhengzhou 450052, China

<sup>b</sup> Tumor Institute of Henan Medical University, Zhengzhou 450052, China

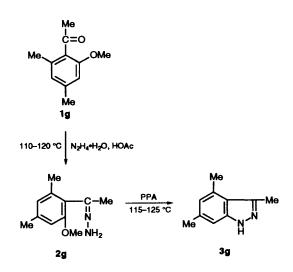
° Department of Chemistry, Nanjing University, Nanjing 210008, China

A new and convenient procedure is described for the synthesis of 1*H*-indazoles by cyclization of 2,6-dialkoxyacetophenone hydrazones in the presence of polyphosphoric acid (PPA).

Of the three classical methods for the preparation of 1H-indazoles the most frequently used is the diazotization of suitably substituted anilines bearing a hydrocarbon group at the *ortho*-position.<sup>1</sup> A similar reaction occurs when *N*-nitroso-2-methylanilines are heated in the presence of sodium carbonate,<sup>2</sup> and treatment of *o*-chloro-aromatic ketones with a nitro substituent *para* to the chloro substituent with arylhydrazines also gives 1-aryl-1*H*-indazoles.<sup>3</sup> These methods have several limitations as regards the reaction conditions; therefore, several improved syntheses <sup>4</sup> <sup>10</sup> have been proposed or developed. However, as far as we know, an efficient synthesis of 1*H*- indazoles in reasonable yield has not yet been reported. We describe here a facile one-pot synthesis of 1*H*-indazoles in high yield.



Treatment of 2,6-dialkoxy (or hydroxy) acetophenones 1a-f with hydrazine hydrate in the presence of HOAc at 110–120 °C results in hydrazones 2a-f. After cooling, without isolation of 2a-f, the addition of PPA followed by stirring at 110–135 °C for about 20 min, gives 3-methyl-4-alkoxy(or hydroxy)-1*H*-indazoles 3a-f as the final products.


Application of this method to 2-methoxy-4,6-dimethylactophenone 1g, gives 3,4,6-trimethyl-1*H*-indazole 3g.

In summary, this new procedure offers several advantages: the

| Table 1 Synthetic conditions, yields and m.p.s for compounds 3 | 3a-g | pounds | for comp | m.p.s f | vields and | conditions, | vnthetic | 1 S | Table |
|----------------------------------------------------------------|------|--------|----------|---------|------------|-------------|----------|-----|-------|
|----------------------------------------------------------------|------|--------|----------|---------|------------|-------------|----------|-----|-------|

| Compound | <i>T/</i> °C | t/min | Yield (%)" | M.p. (°C)* |  |
|----------|--------------|-------|------------|------------|--|
| 3a       | 115-125      | 25    | 34         | 206208     |  |
| 3b       | 120-130      | 20    | 87         | 128-130    |  |
| 3c       | 120-135      | 25    | 80         | 130-131    |  |
| 3d       | 120-135      | 30    | 62         | 100-102    |  |
| 3e       | 120-130      | 30    | 60         | 64-65      |  |
| 3f       | 120-135      | 25    | 65         | 166-168    |  |
| 3g       | 115-125      | 25    | 73         | 206-208    |  |

" Yield of isolated product. " Uncorrected.



easy availability of the reagents, reasonable yield, short reaction time and convenience.

## **Experimental**

4-Acetoxy-3-methyl-1H-indazole 3a: Typical Procedure A.-2,6-Dihydroxyacetophenone 1a (1.52 g, 10 mmol), 85% hydrazine hydrate (1.20 g, 20 mmol) and HOAc (10 drops) were placed in a flask (50 cm<sup>3</sup> volume). The mixture was stirred at 110-120 °C (oil bath heating) and the reaction was monitored by TLC for 15 min. After cooling, PPA (12 g) was added to the reaction mixture, which was then stirred at 115-125 °C for 20 min during which the intermediate 2a disappeared. After cooling, acetic anhydride (1.2 g, 15 mmol) was added to the reaction mixture, which was stirred at 120 °C for 25 min. After cooling, ice-water was added to the reaction mixture. The product was extracted with EtOAc ( $3 \times 40$  cm<sup>3</sup>) and the combined extracts were washed with water  $(2 \times 20 \text{ cm}^3)$ , dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated to give a crystalline residue. Chromatography on silica gel using light petroleum (b.p. 60-90 °C) and EtOAc (4:1) as eluent yielded 3a (0.65 g, 34%); m.p. 206-208 °C.

 $<sup>\</sup>dagger$  As 3-methyl-1*H*-indazol-4-ol is very soluble in water it could not easily be extracted from water and was therefore acetylated with acetic anhydride to give 4-acetoxy-3-methyl-1*H*-indazole.

|          | Molecular<br>formula | Found " (Required) (%) |      |        |                                     |                                  |                                                                                        |
|----------|----------------------|------------------------|------|--------|-------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|
| Compound |                      | C                      | Н    | N      | $v_{\rm max}/{\rm cm}^{-1}$ b       | <i>m</i> / <i>z</i> <sup>c</sup> | $\delta_{\mathrm{H}}[\mathrm{CDCl}_{3}; (\mathrm{CH}_{3})_{4}\mathrm{Si}]^{d}$         |
| 3a       | $C_{10}H_{10}N_2O_2$ | 63.25                  | 5.12 | 14.38  | 3165, 1760, 1627                    | 190 (M <sup>+</sup> ),           | 2.64 (3 H, s, OCCH <sub>3</sub> ), 2.75 (3 H, s, CH <sub>3</sub> ),                    |
|          | (190.20)             | (63.14                 | 5.30 | 14.73) | 1597, 1535, 1204,<br>1153, 820      | 175 (b),<br>147, 119             | 5.85 (1 H, br, NH), 6.92–7.70 (3 H, m,<br>ArH)                                         |
| 3b       | $C_{9}H_{10}N_{2}O$  | 66.64                  | 6.47 | 17.16  | 3171, 1623, 1596,                   | $162 (M^+, b),$                  | 2.80 (3 H, s, CH <sub>3</sub> ), 4.07 (3 H, s, OCH <sub>3</sub> ),                     |
|          | (162.19)             | (66.67                 | 6.21 | 17.28) | 1525, 1354, 1257,<br>1114, 995, 847 | 147, 131,<br>119                 | 6.60–7.67 (3 H, m, ArH), 8.56 (1 H,<br>br. NH)                                         |
| 3c       | $C_{10}H_{12}N_{2}O$ | 68.06                  | 7.07 | 15.97  | 3166, 1622, 1597,                   | 176 (M <sup>+</sup> ),           | 1.64 (3 H, t, OCH <sub>2</sub> CH <sub>3</sub> ), 2.95 (3 H, s,                        |
|          | (176.22)             | (68.15                 | 6.81 | 15.90) | 1525, 1373, 1261,                   | 148 (b),                         | CH <sub>3</sub> ), 4.52 (2 H, q, OCH <sub>2</sub> CH <sub>3</sub> ), 6.94–             |
|          |                      |                        |      |        | 1122, 774                           | 131, 119                         | 8.00 (3 H, m, ArH), 9.60 (1 H, br, NH)                                                 |
| 3d       | $C_{11}H_{14}N_2O$   | 69.61                  | 7.00 | 14.60  | 3166, 1623, 1596,                   | 190 (M <sup>+</sup> ),           | 1.07 (3 H, t, OCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ), 1.84 (2 H,           |
|          | (190.24)             | (69.64                 | 7.42 | 14.73) | 1524, 1373, 1261,                   | 148 (b),                         | m, $OCH_2CH_2CH_3$ ), 2.62 (3 H, s, $CH_3$ ),                                          |
|          |                      |                        |      |        | 1100, 768                           | 147, 119                         | 3.87 (2 H, t, OCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ), 6.02–7.04            |
|          |                      |                        |      |        |                                     |                                  | (3 H, m, ArH), 9.15 (1 H, br, NH)                                                      |
| 3e       | $C_{12}H_{16}N_2O$   | 70.29                  | 7.66 | 13.63  | 3167, 1622, 1597,                   | 204 (M <sup>+</sup> ),           | 0.80-2.15 (7 H, m, OCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ), |
|          | (204.27)             | (70.55                 | 7.90 | 13.72) | 1524, 1373, 1263,                   | 176, 148                         | 2.65 (3 H, s, CH <sub>3</sub> ), 3.90 (2 H, t, OCH <sub>2</sub>                        |
|          |                      |                        |      |        | 1110, 772                           | (b), 147,                        | CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ), 6.06–7.05 (3 H, m, ArH),            |
|          |                      |                        |      |        |                                     | 119                              | 9.50 (1 H, br, NH)                                                                     |
| 3ſ       | $C_{10}H_{12}N_2O_2$ | 62.52                  | 6.08 | 14.36  | 3182, 1636, 1602,                   | 192 (M <sup>+</sup> , b)         | 2.87 (3 H, s, CH <sub>3</sub> ), 4.15 (3 H, m, s,                                      |
|          | (192.22)             | (62.28                 | 6.29 | 14.57) | 1531, 1392, 1202,                   | 117, 149,                        | OCH <sub>3</sub> )                                                                     |
|          |                      |                        |      |        | 1144, 804                           | 134, 119                         | 4.24 (3 H, s, OCH <sub>3</sub> ), 6.67–6.94 (2 H, m,                                   |
| 2-       |                      | 74.04                  | 776  | 17.05  | 2176 1622 1507                      | 1(0)(1(t+1))                     | ArH), 7.92 (1 H, s, NH)<br>2(4/2 H = CH) 288/2 H = Ar (CH)                             |
| 3g       | $C_{10}H_{12}N_2$    | 74.94                  | 7.76 | 17.85  | 3176, 1622, 1597,                   | 160 (M <sup>+</sup> , b)         | $2.64 (3 H, s, CH_3), 2.88 (3 H, s, Ar-CH_3),$                                         |
|          | (160.22)             | (74.96                 | 7.55 | 17.49) | 1445, 1344, 1231,                   | 159, 145,                        | 2.94 (3 H, s, $Ar-CH_3$ ), 7.45 (2 H, d, $ArU$ ) 7.87 (1 H a NU)                       |
|          |                      |                        |      |        | 990, 833                            | 115                              | ArH), 7.87 (1 H, s, NH)                                                                |

<sup>a</sup> Analysed on a Perkin-Elmer 240C element analytical meter. <sup>b</sup> Recorded on a Nicolet-170 SX-FT-IR spectrophotometer (KBr). <sup>c</sup> Recorded on a VG-ZAB-HS mass spectrometer (EI). <sup>d</sup> Recorded on a JEOL PMX-60SI spectrometer (60 MHz).

4-Methoxy-3-methyl-1H-indazole 3b: Typical Procedure B.— A mixture of 2,6-dimethoxyacetophenone 1b (0.90 g, 5 mmol), 85% hydrazine hydrate (0.60 g, 10 mmol) and HOAc (10 drops) was stirred at 110-120 °C, and monitored by TLC. After 25 min the intermediate 1b had disappeared. After cooling, PPA (10 g) was added to the mixture, which was then stirred at 120-135 °C for 20 min, during which time the intermediate 2b disappeared. After cooling, ice-water was added to the mixture. The product was extracted with EtOAc  $(3 \times 40 \text{ cm}^3)$ , and the combined extracts were washed with water, dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated to give a brown crystalline crude product which was purified as above to give white needles of product 3b; yield (0.71 g, 87%); m.p. 128-130 °C. Compounds 3c-g were obtained by a similar procedure as B from 1c-g.

Compounds 3a-g were fully characterized by IR, <sup>1</sup>H NMR, MS and elemental analysis, the data being listed in Tables 1 and 2.

## References

- 1 R. Huisgen and H. Nakaten, Liebigs Ann. Chem., 1954, 586, 84.
- 2 P. Jacobson and L. Huber, Ber. Disch. Chem. Ges., 1908, 41, 660.
- 3 W. Borsche and W. Scriba, Liebigs Ann. Chem., 1939, 540, 83.
- 4 N. Virona, G. Cusmano, G. Maculuso, V. Frenna and M. Ruccia, J. Heterocycl. Chem., 1979, 16, 783. 5 W. A. F. Gladstone and R. O. C. Norman, J. Chem. Soc., 1965, 3048.
- 6 T. Yamazaki, G. Baum and H. Sheter, Tetrahedron Lett., 1974, 4421.
- 7 E. G. Abbad, M. T. G. Lopez, G. G. Munoz and M. Stud, J. Heterocycl. Chem., 1976, 13, 1241.
- 8 K. H. Mayer, D. Lauerer and H. Heitzer, Synthesis, 1977, 804.
- 9 M. P. Kausik, J. Org. Chem., 1982, 47, 3503.
- 10 S. Matsugo, M. Saito and A. Takamizawa, Synthesis, 1983, 482.

Paper 3/01779F Received 29th March 1993 Accepted 8th April 1993